Water in the atmosphere of extra-solar planets

How many generations of humans have looked up at the night sky and wondered how many of stars had planets around them? Perhaps it is only a few, since early humans would have considered our planet and our star to be unique, and would have looked at other stars without comprehending that they were the same as our sun, only at a vast distance. But ours is the first generation to know the answer, that most stars do indeed have planets around them.

WASP camera array

My research involves looking for such extra-solar planets. We operate the WASP-South transit survey, which is an array of cameras out in the South African desert which photographs the night sky repeatedly, every clear night, building up light-curves of millions of stars, watching for small dips in their light caused by a planet passing in front of the star, once per orbit.

Exoplanet transit illustration

The depth of the transit dip tells you the fraction of the star that is occulted by the planet, and thus, if you know the size of the star, you obtain the size of the planet. You can then find the mass of the planet by the gravity it exerts on the host star, which you measure using the Doppler shift of the star’s light as it is rhythmically tugged to-and-fro as the planet orbits. The combination of size and mass tells you that planet’s density, and from that you have a fair idea of what it is made of.

Further, we are beginning to be able to detect the atmospheres of extra-solar planets, despite them being hundreds of light-years away. If we can detect molecules in the atmospheres of exoplanets then, in principle, we might detect “biomarker” molecules that indicate organic activity (such as free oxygen). Thus it is realistic that, within a couple of decades, we will have found other Earth-like planets that we know to bear life.

We look for molecules by observing exoplanet host stars both in and out of transit and then comparing the spectra. The body of the planet blocks some of the star’s light, but the thin smear of atmosphere around the planet is only partially opaque, and is back-lit by the bright star. Molecules in the atmosphere can thus cause absorption features in the recorded spectrum. By subtracting the in-transit and out-of-transit stellar spectra you have the transmission spectrum of the exoplanet atmosphere.

Opacity of an exoplanet atmosphere

Another way of thinking about it is that the molecules cause absorption at particular wavelengths, making the atmosphere more opaque, which means that the planet is effectively marginally bigger at that wavelength, and thus the transit depth is marginally greater.

Even the largest planets are small compared to the stars, blocking typically only 1% of their light, and the atmosphere is only a thin smear around the planet, and hence the change in transit depth caused by such absorption features is only one part in ten thousand. Detecting this is right at the limit of current technology, and involves pushing instruments to their limit, beyond what they were designed to do. For example the Hubble Space Telescope was designed long before we had found any exoplanets, before this work was envisaged, though that doesn’t stop astronomers trying.

Exoplanet atmosphere absorption

To stand the best chance of detecting molecules you need planets around a bright star (hence lots of photons), and you want a large planet with a puffed-up and fluffy atmosphere (maximising the fraction of the star covered by the planet’s atmosphere). A short-period orbit, thus producing lots of transits to observe, is also helpful.

The WASP project is well suited to finding such systems, since it is tuned to finding large “hot Jupiter” planets close to their stars. Our planets are also around relatively bright stars, typically a hundred times brighter than host stars of planets found by the NASA planet-hunting mission Kepler, which looks at fainter stars in a smaller patch of sky.

Hence a team led by Avi Mandell at NASA’s Goddard Space Flight Center chose three WASP planets to observe with the WFC3 instrument on the Hubble Space Telescope, looking for molecules in the atmospheres of WASP-12b, WASP-17b and WASP-19b (the “b” refers to the second object in each system, namely the planet).

The NASA team claim that they have indeed detected a broad absorption feature in all three systems, at a wavelength of 1.4 microns, which they identify as being produced by water molecules.

Detection of water on three WASP exoplanets

The transit depth as a function of wavelength in the infra-red for three WASP exoplanets. The broad bump in the middle of the region is possibly an absorption feature (higher transit depth) caused by water molecules. The coloured lines are different models with different compositions. (Figure by Mandell etal, 2013, Astrophysical Journal, 779, 128)

This is important since water is, of course, an essential part of life on Earth. These planets are totally uninhabitable (being large gas giants and far too hot for life), but finding water in an exoplanet atmosphere is an important demonstration of the method.

Can we believe it? Well, the exoplanet literature is currently full of debate on how reliable such results are, and whether they result from instrumental systematics in detectors being pushed to the edge of their capabilities. Further, many such studies are finding “flat” transmission spectra, which indicate opaque clouds blocking all wavelengths equally, rather than the absorption features expected in a clear sky. If many exoplanets have cloudy skies then this work is going to be hard.

There is little doubt, though, that the next generation of facilities, designed for this work, will routinely map out the molecular compositions of exoplanet atmospheres. This should start with the successor to Hubble, the James Webb Space Telescope, scheduled for launch in 2018.

James Webb Space Telescope

James Webb Space Telescope

To look for life on Earth-like planets in the habitable zone, however, we first need to find such planets. That means finding much smaller planets at much greater distances from their star. That is much harder, since small planets produce much smaller transit dips, and long orbits mean very few transits. Thus we are still some decades away from the investigation of the atmosphere of an Earth-like exoplanet. But we’re on that track, and heading down it faster than many thought possible until very recently.

NASA press release on this work and similar work on two other planets.

Advertisements

6 thoughts on “Water in the atmosphere of extra-solar planets

  1. Ron Murphy

    Thanks for this Coel. Fascinating.

    Is there any value, or useful possibility, of extracting data from multiple transits? An earth-annual equivalent transit would only occur once an earth-year, might not coincide with the relative earth-star alignment, may not coincide with observational conditions, and perhaps may be outside the useful lifetime of the experimental equipment or experimental programs, …. Is all this work really dependent on single transits?

    Reply
  2. Coel Post author

    Hi Ron,
    Most of the transiting exoplanets that we know of so far are in short-period orbits (because these ones are easiest to find), so the transits recur every few days. This means that, yes, you can observe multiple transits and build up the quality of the observations that way (the limitation then being time on Hubble).

    The nearest we have to an Earth-like planet in an Earth-like orbit is currently Kepler-22b, which is a small, rocky planet in a 289-day orbit. In principle one could observe multiple transits of that, but with that spacing between transits it would obviously take a long time to do.

    Reply
  3. Anton Szautner

    This is stupendously wonderful research!
    I would like to add that systems wherein we happen to have detected short-period planets is not a straightforward guarantee that we may eventually (given sufficient time on ANY telescope) discover even most, if any, of the existing outlying members strictly by the transit method. Our own planetary system would, from interstellar distances exactly within the plane of the ecliptic, which we assign to the plane of our Earth’s orbit, could very easily miss transits of the outer planets across the disk of our Sun, since the inclinations of their orbits, although fairly closely oriented to ours, are not sufficiently coincident in every direction along our ecliptic to provide the possibility of a transit across the relatively small face of our Sun.

    Reply
  4. Pingback: The Real-Life Search for Aliens | Mycroft's Journal

  5. Pingback: Contra theologian Roger Trigg on the nature of science | coelsblog

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s