Category Archives: Scientism

Science Unlimited, Part One: Pseudoscience

Philosophers Maarten Boudry and Massimo Pigliucci have recently edited a volume of essays on the theme of scientism. The contributions to Science Unlimited? The Challenges of Scientism range from sympathetic to scientism to highly critical.

I’m aiming to write a series of blog posts reviewing the book, organised by major themes, though knowing me the “reviewing” task is likely to play second fiddle to arguing in favour of scientism.

Of course the term “scientism” was invented as a pejorative and so has been used with a range of meanings, many of them strawmen, but from the chapters of the book emerges a fairly coherent account of a “scientism” that many would adopt and defend.

This brand of scientism is a thesis about epistemology, asserting that the ways by which we find things out form a coherent and unified whole, and rejecting the idea that knowledge is divided into distinct domains, each with a different “way of knowing”. The best knowledge and understanding is produced by combining and synthesizing different approaches and disciplines, asserting that they must mesh seamlessly.

A non-scientistic approach might reject this unified view. It might, for example, see sociology as divorced from biology. It might assert that culture is sufficiently independent of underlying biology that the biological sciences are irrelevant and can be ignored when dealing with sociology or politics or economics, which instead are independent and self-contained disciplines, complete in themselves. I would argue that this view is, at best, a needlessly self-limiting handicap, and at worst makes such disciplines prone to error and ideological fads.

A more fundamental rejection of scientism might see knowledge as having multiple and distinct sources. For example, one might argue that one domain of knowledge (“science”) arises from empirical evidence, whereas another, quite separate domain could arise from a priori reasoning. One could then assert that knowledge within one domain cannot be arrived at from another domain, and may not even be valid within other domains. Some would argue that the domains of ethics and mathematics are examples (of which more in later installments of this review).

In their introduction to the book, Boudry and Pigliucci explain that the question of scientism is one of two demarcation problems. The first is how to distinguish science from pseudoscience. The second is whether and how to distinguish “scientific” knowledge from other types of valid knowledge.

In his chapter, Pigliucci summarises philosophers’ responses to the first demarcation problem. For a while it was thought that Popper’s ideas of falsification provided a straightforward and clear criterion: if ideas can be falsified they are “science”, if they cannot then they are pseudoscience.

But it was soon realised that it’s not that easy. If a prediction turns out wrong, then clearly some part of the overall model is wrong, but one usually has considerable latitude in choosing which parts of the model to update. One can therefore protect a particular idea from falsification by instead adjusting something else. For example, if galaxies are found not to be rotating as expected, one could conclude that Newton’s law of gravity is falsified (we are dealing here with weak-field gravity where relativistic effects are negligible, so Newton’s gravity should work), or one can instead invoke additional, unseen “dark matter”.

A second problem is that Popper’s criterion gives no guidance on the practicalities. A prediction of a solar eclipse in thirty years time, based on well-tested models, is surely “scientific”, but it cannot be directly tested within the next decade. How about an eclipse prediction for a million years hence, or one for a million years in the past when no-one was there to record it? How about a prediction in particle physics that to test would require an accelerator ten times more energetic than we can currently build?

There’s a third problem: Is Popper’s maxim descriptive or prescriptive? If the latter then by what authority? Physicists generally regard the development of string theory as scientific (which is not the same as regarding it as proven), yet it is not readily testable. Some philosophers, including Pigliucci, have therefore claimed that it is not science but is rather metaphysics. But by what authority? If one were asked to justify the falsification criterion, how would one do it?

For the above reasons some philosophers have concluded that the task is hopeless. Pigliucci points to Larry Laudan as arguing that “demarcation projects are a waste of time for philosophers, since — among other reasons — it is unlikely to the highest degree that anyone will ever be able to come up with small sets of necessary and jointly sufficient conditions to define science, pseudoscience, and the like”.

Pigliucci himself regards this as too pessimistic, and instead argues for an account of science based on Wittgensteinian “family resemblance” concepts. There might not be neat criteria, but there are enough diagnostic characteristics that, in practice, it is possible to tell one from the other.

Personally I would argue that there is indeed one straightforward criterion distinguishing science from pseudoscience. It was stated by Feynman in his 1974 commencement address Cargo Cult Science, an essay still worth reading, for example for its prescience about the replication crisis in some areas of science.

For someone who was rather dismissive of academic philosophy, Feynman was actually pretty insightful about the nature and philosophy of science. He summed up science saying:

The first principle is that you must not fool yourself — and you are the easiest person to fool.

That’s it. Pseudoscience is when you treat adherence to an ideology or belief as more important than the evidence for it. Science is when you’re genuinely trying to adjust your beliefs to the evidence. Humans are hugely prone to cognitive biases, so can readily slip into pseudo-scientific thinking. Many of the methods developed by science — for example, randomised, double-blind trials — are attempts to minimise human cognitive bias.

By this definition, possibilities of ghosts, psychic powers, the supernatural and such are not ruled out by fiat, they are not “pseudoscience” because of the claims being made, they are pseudoscience because the evidence for the claims is grossly insufficient.

Feynman’s criterion also explains why Popper’s falsifiability is insightful. If one is genuinely trying to refute ones ideas, by making predictions and then testing them, then one is least prone to ideological bias. Pseudoscientists, such as homeopaths, astrologers and conspiracy theorists, look only for evidence that will confirm their beliefs, and scheme up excuses for why they cannot or should not look for refutations (an anti-scientistic appeal to “other ways of knowing” is a favourite).

But falsification is only part of the story. As above, sometimes one cannot test a prediction even if one would like to. That alone doesn’t make the enterprise pseudo-scientific; what matters is whether belief takes precedence over evidence. Thus, if a string theorist were to make dogmatic claims going well beyond the evidence then they’re not acting as a scientist. But a physicist who considers that string theory is a promising and worthwhile avenue to explore, while remaining critically aware of the difficulties of testing it, is indeed being entirely scientific.

Advertisements

Does the problem of induction defeat scientism?

Quillette magazine recently published a piece written by Spencer Hall giving: “The Philosophical Case against Scientism”. He begins:

Scientism is the claim that science is the only source of knowledge.

Let’s accept this definition, though it’s important to note that no-one defending such a thesis would interpret “science” in a narrow sense, but would regard it broadly as including the gathering of empirical evidence and rational analysis and conceptualising about that evidence. Thus, “scientism” would not, for example, deny that historians can generate knowledge, it would instead claim that they are doing so using methods that are pretty much the same as those used also by scientists. The differences in approach then arise from the pragmatics of what sort of evidence is accessible, not from their being distinct and separate “ways of knowing”.

The philosophical case that Hall presents is based on the problem of induction. No amount of observing a regularity proves that it will still hold tomorrow. The supposition that it will requires a “uniformity of nature” thesis that the future will be like the past, and since we cannot obtain empirical evidence from the future, that thesis — it is claimed — cannot be proven by science.

Hall then argues that science finds this “Past–Future Thesis” indispensable, but declares:

… either the PFT can be justified on non-empirical grounds, or it cannot be justified at all. If we accept the first horn, then we are conceding that scientific observation is not the only source of knowledge, and thus that scientism is false.

Hall then declares that the PFT is indeed true, and says:

… since there is no empirical way of defending PFT, we are forced to conclude that defending the assumption — and ultimately defending science itself — must rest on a philosophical foundation rather than an empirical one. And, thus, it follows that the claim that science is the only source of knowledge is false.

He then, rather derisively, declares this to be basic stuff akin to “remedial pre-algebra”, and finishes with: “If popular science writers wish to defend scientism, they would do well to demonstrate a modicum of understanding of the best arguments against their position”.

So, according to Hall’s argument, science is not the only source of knowledge because: (1) we know that the PFT is true, and (2) we know that from philosophy rather than from science.

But strikingly absent from Hall’s article is any philosophical defence of PFT. If one wants to use this example to show that philosophy can produce knowledge where science cannot, one first has to show that philosophy proves the PFT true. Yet Hall does not do this.

So this refutation of scientism fails right there. Showing that science cannot answer a question is only halfway to a refutation of scientism, since one then needs to show that some “other way of knowing” can produce a reliable answer.

But can the use of induction be defended? Personally I think it can, though as a matter of probability and likelihood, not of rigorous proof. (But then it is accepted that science never produces absolute proof, but only provisional, most-likely models that are better than any known alternatives.)

Hall indeed considers this, suggesting that: “… if we look at the past, we see that the future resembles the past all the time, so there’s an overwhelming probabilistic case for the PFT”, but then objecting that: “in appealing to what’s happened in the past as a guide to what will happen in the future, the would-be defender is assuming the very thing in question”.

But, we can consider the set of all events, past and future. And we can consider picking from that set, and encountering a sequence of picking one thousand white balls in a row and then the next ball being black. Obviously, the likelihood of that happening will depend on the probability distribution governing picking from the set, and — ex hypothesi — we don’t know that, since we don’t know about future events. But, that sequence will have some probability, and so we can consider the ensemble of all possible probability distributions.

If there are long periods of stasis of unknown length, it is more probable that one is somewhere within the period of stasis rather than exactly at its end. That follows simply because there is only one “slot” at the end of the sequence but lots of slots that are not at the end. Given a long sequence of normality, and picking our location on that sequence at random, it is more likely that we will be somewhere boring in the midst of the sequence, rather than at the highly particular “last day of normality” right at its end. In essence, we’re not using the past as a guide to the future, we’re using it as a guide to the present time, and asking whether it is unusual.

This analysis requires as to conceptualise a birds-eye overview of the timeline, but it doesn’t require any assumption about the future and it doesn’t require knowing the probability distribution of future events.

Of course it is no guarantee, and for all we know the probabilities could be such that normality is coming to an imminent end. But, the sub-set of probability distributions that make it likely that, after having picked a thousand white balls in a row, the next is a black, is much smaller than the set of all possible probability distributions. Only a very special and particular probability distribution could make it more likely that we are exactly at the end of such a sequence, rather than anywhere else along it. And, given that we don’t know the probability distribution, that is unlikely. So it is more likely than not that a sequence of stasis will continue with the next pick.

Again, this argument does not depend on assuming a uniform probability distribution, it only depends on their being a probability distribution, and on considering the super-set of all possible such probability distributions.

This line of reasoning has been proposed by Ray Solomonoff, who formalised and developed it into his “Formal Theory of Inductive Inference”. I’m not aware of any refutation of the argument and so I currently regard it as a sufficient resolution of the problem of induction. (Though part of the point of writing a blog piece about it is that, if it’s wrong, someone might tell me why!)

As regards scientism, a last question arises as to whether the above argument counts as “science” or as “philosophy”. It is certainly a rational analysis involving mathematical reasoning. It is not a rebuttal that can be observed empirically with a pair of binoculars or a microscope. But then no sensible account limits science to what can be directly observed. That’s only the half of it. Science is just as much about the concepts and rational analysis that make sense of the empirical world. Thus the above rebuttal is squarely within the domain of science, and so the attempt to defeat scientism fails.

How not to defend humanistic reasoning

Sometimes the attitudes of philosophers towards science baffle me. A good example is the article Defending Humanistic Reasoning by Paul Giladi, Alexis Papazoglou and Giuseppina D’Oro, recently in Philosophy Now.

Why did Caesar cross the Rubicon? Because of his leg movements? Or because he wanted to assert his authority in Rome over his rivals? When we seek to interpret the actions of Caesar and Socrates, and ask what reasons they had for acting so, we do not usually want their actions to be explained as we might explain the rise of the tides or the motion of the planets; that is, as physical events dictated by natural laws. […]

The two varieties of explanation appear to compete, because both give rival explanations of the same action. But there is a way in which scientific explanations such as bodily movements and humanistic explanations such as motives and goals need not compete.

This treats “science” as though it stops where humans start. Science can deal with the world as it was before humans evolved, but at some point humans came along and — for unstated reasons — humans are outside the scope of science. This might be how some philosophers see things but the notion is totally alien to science. Humans are natural products of a natural world, and are just as much a part of what science can study as anything else.

Yes of course we want explanations of Caesar’s acts in terms of “motivations and goals” rather than physiology alone — is there even one person anywhere who would deny that? But nothing about human motivations and goals is outside the proper domain of science. Continue reading

Another philosopher of science doesn’t understand science

Maybe I’m having a philosopher-bashing week. After disagreeing with Susan Haack’s account of science I then came across an article in the TLS by David Papineau, philosopher of science at King’s College London. He does a good job of persuading me that many philosophers of science don’t know much about science. After all, their “day job” is not studying science itself, but rather studying and responding to the writings of other philosophers of science. Continue reading

Science is a product of science!

The latest issue of Free Enquiry magazine contains several articles about philosophy and science, including an article by Susan Haack, a philosopher of science who “defends scientific inquiry from the moderate viewpoint”, rejecting cynical views that dismiss science as a mere social construction, but also rejecting “scientism”.

While Susan Haack talks quite a bit of sense about science, she promotes a view that is common among philosophers of science but which I see as fundamentally wrong. That is the idea that science and the scientific method depend on philosophical principles that cannot be justified by science, but instead need to be justified by philosophy. Continue reading

Alex Rosenberg’s Guide to Reality and morality under scientism

Alex Rosenberg’s An Atheist’s Guide to Reality is the most radically scientistic book that I’ve read. I should thus like it a lot! And generally I do, but with some reservations.

I’ll address here one argument that Rosenberg makes about morality and politics which I think is faulty, and, indeed, not “scientistic” enough. I’ve seen other atheists make the same argument so it is worth exploring. Continue reading

On Stephen Law on Scientism

scientism It’s good to see philosophers taking scientism seriously, and not just using the term as a bogey word. Massimo Pigliucci and Maarten Boudry are editing a forthcoming volume on scientism (Total Science, University of Chicago Press) and some of the essays are appearing on the internet.

I’ll discuss here the draft chapter by Stephen Law (Heythrop College, University of London) who writes, discussing the proper scope of science: Continue reading