A major part of scientism is the idea that maths and logic are not distinct from science, but rather that they arise from the same fundamental root — they are all attempts to find descriptions of the world around us. The axioms of maths and logic are thus equivalent to the laws of physics, being statements of deep regularities of how the world behaves that enable us to describe and model the world.

My article advocating that mathematics is a part of science was recently posted on *Scientia Salon*. This was followed by an article by Massimo Pigliucci which took the opposite line and criticised the return of “radical empiricism”.

In response I wrote about the roots of empiricism, defending the radical empiricism that Pigliucci rejects. That post was getting rather long, so I have hived off parts into this post where I return to the distinction between mathematics and science. This is essentially a third part to my above two posts, countering various criticisms made on *Scientia Salon*.

To summarise the above arguments in two sentences, my critics were saying: “Well no, mathematics is anything but studying physical objects. It is the study of abstract concepts”, whereas I was saying, “Yes, mathematics is the study of abstract concepts, abstract concepts that are about the behaviour of the physical world”.

I have argued that maths and logic and science are all part of the same ensemble, being ideas adopted to model the world. We do that modelling by looking for regularities in the way the world works, and we abstract those into concepts that we call “laws of physics” or “axioms of maths” or of logic. Thus axioms of maths and logic are just as much empirical statements about the behaviour of the world as laws of physics. In part one I discussed other possible origins of mathematical axioms, while in part two I discussed the fundamental basis of empirical enquiry.

That leaves several possible differences between maths and science, which I address here: Continue reading →

### Like this:

Like Loading...