Tag Archives: determinism

Does quantum indeterminism defeat reductionism?

After writing a piece on the role of metaphysics in science, which was a reply to neuroscientist Kevin Mitchell, he pointed me to several of his articles including one on reductionism and determinism. I found this interesting since I hadn’t really thought about the interplay of the two concepts. Mitchell argues that if the world is intrinsically indeterministic (which I think it is), then that defeats reductionism. We likely agree on much of the science, and how the world is, but nevertheless I largely disagree with his article.

Let’s start by clarifying the concepts. Reductionism asserts that, if we knew everything about the low-level status of a system (that is, everything about the component atoms and molecules and their locations), then we would have enough information to — in principle — completely reproduce the system, such that a reproduction would exhibit the same high-level behaviour as the original system. Thus, suppose we had a Star-Trek-style transporter device that knew only about (but everything about) low-level atoms and molecules and their positions. We could use it to duplicate a leopard, and the duplicated leopard would manifest the same high-level behaviour (“stalking an antelope”) as the original, even though the transporter device knows nothing about high-level concepts such as “stalking” or “antelope”.

As an aside, philosophers might label the concept I’ve just defined as “supervenience”, and might regard “reductionism” as a stronger thesis about translations between the high-level concepts such as “stalking” and the language of physics at the atomic level. But that type of reductionism generally doesn’t work, whereas reductionism as I’ve just defined it does seem to be how the world is, and much of science proceeds by assuming that it holds. While this version of reductionism does not imply that explanations at different levels can be translated into each other, it does imply that explanations at different levels need to be mutually consistent, and ensuring that is one of the most powerful tools of science.

Our second concept, determinism, then asserts that if we knew the entire and exact low-level description of a system at time t  then we could — in principle — compute the exact state of the system at time t + 1. I don’t think the world is fully deterministic. I think that quantum mechanics tells us that there is indeterminism at the microscopic level. Thus, while we can compute, from the prior state, the probability of an atom decaying in a given time interval, we cannot (even in principle) compute the actual time of the decay. Some leading physicists disagree, and advocate for interpretations in which quantum mechanics is deterministic, so the issue is still an open question, but I suggest that indeterminism is the current majority opinion among physicists and I’ll assume it here.

This raises the question of whether indeterminism at the microscopic level propagates to indeterminism at the macrosopic level of the behaviour of leopards. The answer is likely, yes, to some extent. A thought experiment of coupling a microscopic trigger to a macroscopic device (such as the decay of an atom triggering a device that kills Schrodinger’s cat) shows that this is in-principle possible. On the other hand, using thermodynamics to compute the behaviour of steam engines (and totally ignoring quantum indeterminism) works just fine, because in such scenarios one is averaging over an Avogadro’s number of partlces and, given that Avogadro’s number is very large, that averages over all the quantum indeterminicity.

What about leopards? The leopard’s behaviour is of course the product of the state of its brain, acting on sensory information. Likely, quantum indeterminism is playing little or no role in the minute-by-minute responses of the leopard. That’s because, in order for the leopard to have evolved, its behaviour, its “leopardness”, must have been sufficiently under the control of genes, and genes influence brain structures on the developmental timescale of years. On the other hand, leopards are all individuals. While variation in leopard brains derives partially from differences in that individual’s genes, Kevin Mitchell tells us in his book Innate that development is a process involving much chance variation. Thus quantum indeterminicity at a biochemical level might be propogating into differences in how a mammal brain develops, and thence into the behaviour of individual leopards.

That’s all by way of introduction. So far I’ve just defined and expounded on the concepts “reductionism” and “determinism” (but it’s well worth doing that since discussion on these topics is bedeviled by people interpreting words differently). So let’s proceed to why I disagree with Mitchell’s account.

He writes:

For the reductionist, reality is flat. It may seem to comprise things in some kind of hierarchy of levels – atoms, molecules, cells, organs, organisms, populations, societies, economies, nations, worlds – but actually everything that happens at all those levels really derives from the interactions at the bottom. If you could calculate the outcome of all the low-level interactions in any system, you could predict its behaviour perfectly and there would be nothing left to explain.

There is never only one explanation of anything. We can always give multiple different explanations of a phenomenon — certainly for anything at the macroscopic level — and lots of different explanations can be true at the same time, so long as they are all mutually consistent. Thus one explanation of a leopard’s stalking behaviour will be in terms of the firings of neurons and electrical signals sent to muscles. An equally true explanation would be that the leopard is hungry.

Reductionism does indeed say that you could (in principle) reproduce the behaviour from a molecular-level calculation, and that would be one explanation. But there would also be other equally true explanations. Nothing in reductionism says that the other explanations don’t exist or are invalid or unimportant. We look for explanations because they are useful in that they enable us to understand a system, and as a practical matter the explanation that the leopard is hungry could well be the most useful. The molecular-level explanation of “stalking” is actually pretty useless, first because it can’t be done in practice, and second because it would be so voluminous and unwieldy that no-one could assimilate or understand it.

As a comparison, chess-playing AI bots are now vastly better than the best humans and can make moves that grandmasters struggle to understand. But no amount of listing of low-level computer code would “explain” why sacrificing a rook for a pawn was strategically sound — even given that, you’d still have all the explanation and understanding left to achieve.

So reductionism does not do away with high-level analysis. But — crucially — it does insist that high-level explanations need to be consistent with and compatible with explanations at one level lower, and that is why the concept is central to science.

Mitchell continues:

In a deterministic system, whatever its current organisation (or “initial conditions” at time t) you solve Newton’s equations or the Schrodinger equation or compute the wave function or whatever physicists do (which is in fact what the system is doing) and that gives the next state of the system. There’s no why involved. It doesn’t matter what any of the states mean or why they are that way – in fact, there can never be a why because the functionality of the system’s behaviour can never have any influence on anything.

I don’t see why that follows. Again, understanding, and explanations and “why?” questions can apply just as much to a fully reductionist and deterministic system. Let’s suppose that our chess-playing AI bot is fully reductionist and deterministic. Indeed they generally are, since we build computers and other devices sufficiently macroscopically that they average over quantum indeterminacy. That’s because determinism helps the purpose: we want the machine to make moves based on an evaluation of the position and the rules of chess, not to make random moves based on quantum dice throwing.

But, in reply to “why did the (deterministic) machine sacrifice a rook for a pawn” we can still answer “in order to clear space to enable the queen to invade”. Yes, you can also give other explanations, in terms of low-level machine code and a long string of 011001100 computer bits, if you really want to, but nothing has invalidated the high-level answer. The high-level analysis, the why? question, and the explanation in terms of clearing space for the queen, all still make entire sense.

I would go even further and say you can never get a system that does things under strict determinism. (Things would happen in it or to it or near it, but you wouldn’t identify the system itself as the cause of any of those things).

Mitchell’s thesis is that you only have “causes” or an entity “doing” something if there is indeterminism involved. I don’t see why that makes any difference. Suppose we built our chess-playing machine to be sensitive to quantum indeterminacy, so that there was added randomness in its moves. The answer to “why did it sacrifice a rook for a pawn?” could then be “because of a chance quantum fluctuation”. Which would be a good answer, but Mitchell is suggesting that only un-caused causes actually qualify as “causes”. I don’t see why this is so. The deterministic AI bot is still the “cause” of the move it computes, even if it itself is entirely the product of prior causation, and back along a deterministic chain. As with explanations, there is generally more than one “cause”.

Nothing about either determinism or reductionism has invalidated the statements that the chess-playing device “chose” (computed) a move, causing that move to be played, and that the reason for sacrificing the rook was to create space for the queen. All of this holds in a deterministic world.

Mitchell pushes further the argument that indeterminism negates reductionism:

For that averaging out to happen [so that indeterminism is averaged over] it means that the low-level details of every particle in a system are not all-important – what is important is the average of all their states. That describes an inherently statistical mechanism. It is, of course, the basis of the laws of thermodynamics and explains the statistical basis of macroscopic properties, like temperature. But its use here implies something deeper. It’s not just a convenient mechanism that we can use – it implies that that’s what the system is doing, from one level to the next. Once you admit that, you’ve left Flatland. You’re allowing, first, that levels of reality exist.

I agree entirely, though I don’t see that as a refutation of reductionism. At least, it doesn’t refute forms of reductionism that anyone holds or defends. Reductionism is a thesis about how levels of reality mesh together, not an assertion that all science, all explanations, should be about the lowest levels of description, and only about the lowest levels.

Indeterminism does mean that we could not fully compute the exact future high-level state of a system from the prior, low-level state. But then, under indeterminism, we also could not always predict the exact future high-level state from the prior high-level state. So, “reductionism” would not be breaking down: it would still be the case that a low-level explanation has to mesh fully and consistently with a high-level explanation. If indeterminacy were causing the high-level behaviour to diverge, it would have to feature in both the low-level and high-level explanations.

Mitchell then makes a stronger claim:

The macroscopic state as a whole does depend on some particular microstate, of course, but there may be a set of such microstates that corresponds to the same macrostate. And a different set of microstates that corresponds to a different macrostate. If the evolution of the system depends on those coarse-grained macrostates (rather than on the precise details at the lower level), then this raises something truly interesting – the idea that information can have causal power in a hierarchical system …

But there cannot be a difference in the macrostate without a difference in the microstate. Thus there cannot be indeterminism that depends on the macrostate but not on the microstate. At least, we have no evidence that that form of indeterminism actually exists. If it did, that would indeed defeat reductionism and would be a radical change to how we think the world works.

It would be a form of indeterminism under which, if we knew everything about the microstate (but not the macrostate) then we would have less ability to predict time t + 1  than if we knew the macrostate (but not the microstate). But how could that be? How could we not know the macrostate? The idea that we could know the exact microstate at time t  but not be able to compute (even in principle) the macrostate at the same time t  (so before any non-deterministic events could have happened) would indeed defeat reductionism, but is surely a radical departure from how we think the world works, and is not supported by any evidence.

But Mitchell does indeed suggest this:

The low level details alone are not sufficient to predict the next state of the system. Because of random events, many next states are possible. What determines the next state (in the types of complex, hierarchical systems we’re interested in) is what macrostate the particular microstate corresponds to. The system does not just evolve from its current state by solving classical or quantum equations over all its constituent particles. It evolves based on whether the current arrangement of those particles corresponds to macrostate A or macrostate B.

But this seems to conflate two ideas:

1) In-principle computing/reproducing the state at time t + 1 from the state at time t (determinism).

2) In-principle computing/reproducing the macrostate at time t from the microstate at time t (reductionism).

Mitchell’s suggestion is that we cannot compute: {microstate at time t } ⇒ {macrostate at time t + 1 }, but can compute: {macrostate at time t } ⇒ {macrostate at time t + 1 }. (The latter follows from: “What determines the next state … is [the] macrostate …”.)

And that can (surely?) only be the case if one cannot compute: {microstate at time t } ⇒ {macrostate at time t }, and if we are denying that then we’re denying reductionism as an input to the argument, not as a consequence of indeterminism.

Mitchell draws the conclusion:

In complex, dynamical systems that are far from equilibrium, some small differences due to random fluctuations may thus indeed percolate up to the macroscopic level, creating multiple trajectories along which the system could evolve. […]

I agree, but consider that to be a consequence of indeterminism, not a rejection of reductionism.

This brings into existence something necessary (but not by itself sufficient) for things like agency and free will: possibilities.

As someone who takes a compatibilist account of “agency” and “free will” I am likely to disagree with attempts to rescue “stronger” versions of those concepts. But that is perhaps a topic for a later post.

Compatibilism for incompatibilists: free will in five steps

FreeWill Along with cats and cowboy boots a long-running theme of Jerry Coyne’s website has been Jerry’s arguments against any form of “free will”. This usually leads to long comment-thread arguments between the incompatibilists (or “hard determinists”) and the compatibilists amongst Jerry’s readers.

I get the impression that sometimes the incompatibilists don’t properly understand a compatibilist view. They often accuse compatibilists of disliking determinism, of hankering after dualism, hoping that something will turn up that will overturn current science, or of just equivocating. Here I want to explain compatibilism to those determinists who take an incompatibilist stance (“hard determinism”). It is not aimed at libertarian dualists!

First, let’s be clear on the two stances. Compatibilism asks whether, given a deterministic universe, one can arrive at sensible and coherent meanings of terms such as “choice”, “freedom” and indeed “free will”. The compatibilist says yes; the incompatibilist says no, regarding such terms as too tainted by the dualistic idea that humans have a non-material “soul” that can make “choices” that are independent of the physical state of the brain and which thus violate the laws of physics.

Second, we should also be clear that the compatibilist is not disagreeing with the incompatibilist over any aspect of science. The compatibilist is only disagreeing over the meaning of concepts such as “choice” and “freedom”. Thus: Continue reading

Why Jerry Coyne is barking up the wrong tree on moral responsibility and free will

Professor Coyne’s website Why Evolution is True is one of my favourites and generally his views align well with mine. I part company with him, though, in his long-running campaign to get rid of notions of “moral responsibility” and “free will”.

“Moral responsibility”, as often defined and as Coyne uses it, is the notion that morality is an absolute, such that a “morally bad” act should be met with punishment regardless of what any human might think and regardless of any consequences for humans. This is often coupled with the notion that humans have dualistic “free will” and that “moral” choices are those made by this non-material, dualist “will” (in opposition to the idea that human decisions are determined by the physical state of the brain).

Coyne (writing in America) sees these ideas as harmful, first in bolstering religion, and second in leading to a justice system that is based on retribution; he considers that justice should instead be based on deterrence and crime mitigation, coupled with sympathy for criminals through recognition that they are largely the products of their environment.

I agree with Coyne’s rejection of deontological morality and with his rejection of dualistic free will, and I also agree with Coyne’s ideas about the justice system. Yet it seems to me that Europe has already progressed down the lines Coyne wishes to see, and it has done so, not by removing motions of morality and free will from society, but by becoming less religious. Continue reading

Lacking “free will” does not negate moral responsibility

A long-running feature of Jerry Coyne’s popular website has been his discussion of “free will”. Jerry sensibly rejects all notions of mind/body dualism or any notions of a supernatural “soul” which can over-ride the laws of physics.

However, Jerry is at odds with many of his readers in rejecting any notion of “free will” that is compatible with a deterministic universe. Such “compatibilist” stances have been advocated, for example, by Dan Dennett in his 2003 book “Freedom Evolves”, and recently by Sean Carroll.

In essence that dispute is simply about semantics, with both sides agreeing on the physical reality. To illustrate this, consider a laptop computer which looks at the type of a computer file and “chooses” the most appropriate program to open it with.

One could justly declare that, in such uses, the word “chooses” is purely metaphorical, since the computer’s actions are entirely determined by its programming. However, for everyone except those arguing for a supernatural soul which over-rides physics, all other “choices”, by humans or other intelligent animals, must be equally metaphorical, since they are also determined by the prior state of the system.

Thus we have two possibilities, either drop the words “choice” and “decision” from the English language, along with a whole slew of similar words and phrases (“control”, “attempt”, “option”, “plan”, “threaten”, “test”, “compel”, “consider”, “coerce” for starters), or accept that “metaphorical” choices are all there is in this universe, and thus that the word “choice” is quite properly used about deterministic machines when they make a selection from a range of options.

Dennett’s argument is that humans have evolved a sufficiently complex range of responses to any situation that it is sensible to regard them as autonomous agents making “choices” of their own “will”. The word “will” here indicates that it is their own internal properties that are making the “choice”, even though that choice is entirely determined by those internal properties combined with the laws of physics. The word “freedom” in Dennett’s title “Freedom Evolves” indicates that mammals have evolved the flexibility to respond in ways that suit themselves and their own purpose, going beyond the very narrow responses of a simpler or more primitive entity. Continue reading